Temas de Fisica
 
  cetis 166
  Introduccion
  Contacto
  Fisica I
  MOVIMIENTO
  FUERZA
  MASA
  => SOLIDOS
  => ELASTISIDAD
  => FLUIDOS
  => DENSIDAD
  => PESO ESPECIFICO
  => LIQUIDOS
  => VOLUMEN
  => PRECION
  => ENPUJE
  FISICA II
  FISICA III
SOLIDOS

Solidos

 

Los cuerpos sólidos están formados por átomos densamente empaquetados con intensas fuerzas de interacción entre ellos. Los efectos de interacción son responsables de las propiedades mecánicas, térmicas, eléctricas, magnéticas y ópticas de los sólidos.

 

Una característica importante de la mayoría de los sólidos es su estructura cristalina. Los átomos están distribuidos en posiciones regulares que se repiten regularmente de manera geométrica. La distribución específica de los átomos puede deberse a una variada gama de fuerzas. Por ejemplo, algunos sólidos como el cloruro de sodio o sal común se mantienen unidos por enlaces iónicos debidos a la interacción electrostática entre los iones que componen el material. En otros, como el diamante, los átomos comparten electrones, lo que da lugar a los llamados enlaces covalentes.

 

Las sustancias inertes, como el neón, no presentan ninguno de esos enlaces. Su existencia es el resultado de unas fuerzas de atracción conocidas como fuerzas de Van der Waals, así llamadas en honor al físico holandés Johannes Diderik van der Waals. Estas fuerzas aparecen entre moléculas o átomos neutros como resultado de la polarización eléctrica. Los metales, por su parte, se mantienen unidos por lo que se conoce como gas electrónico, formado por electrones libres de la capa atómica externa compartidos por todos los átomos del metal y que definen la mayoría de sus propiedades.

 

Estructura Cristalina

La Física del estado sólido constituye una parte importante de la Física cuántica. Con su ayuda podemos comprender las propiedades mecánicas, térmicas, eléctrico-magnéticas y ópticas propias de los sólidos. La existencia de la materia en un estado u otro depende de las condiciones de presión (P), y temperatura (T) en las que se formaron. De la misma forma, estos parámetros condicionan la formación de la estructura interna del sólido. Cada elemento tiene sus propias curvas de cambio de fase, de manera que dependiendo del elemento se necesitarán unas condiciones u otras para la formación del sólido o para realizar cualquier otro cambio de fase. Dependiendo del alcance del orden espacial de la estructura interna en la materia y su distribución en la misma podemos distinguir entre:

  • Monocristal: Presenta una fuerte interacción entre sus componentes los cuales describen una mínima oscilación con poca energía potencial. Las partículas están dispuestas de acuerdo a un orden en el espacio que está determinado de acuerdo con una red estructural formada por la "recreación" geométrica de la celdilla unidad en toda la estructura del sólido. Presentan lo que se conoce como Anisotropía.
  • Policristal: Está compuesto por diversas regiones en las que individualmente se recrea un monocristal aunque las disposiciones de cada una de estas regiones no son simétricas entre sí. Presenta lo que se llama Isotropía estadística.
  • Amorfos: No presentan una estructura o distribución en el espacio, lo cual los determina como una estructura espacial tridimensional no definida. No se trata de una estructura cristalina. 

Archivo:Cristaliz.PNG


En un modelo de sólido en el que los átomos están conectados entre sí mediante una especie de "muelles" (los cuales representarían la energía potencial que los une), la energía interna del sólido se compone de energía potencial elástica y energía cinética de sus átomos. La presión es una medida del grado de compresión de sus átomos y la temperatura una medida de su energía cinética interna del conjunto de los mismos. Esto nos permite determinar que de acuerdo con las características externas del medio en que se encuentre permitirán al elemento en cuestión poder adoptar un estado u otro e incluso formar o no una estructura cristalina.

Sin embargo la formación de una estructura cristalina no es un proceso fijo en un mismo elemento, ya que incluso tratándose así las condiciones de formación del sólido podrían determinar dos estructuras cristalinas diferentes para un mismo elemento, la cuál otorga las propiedades tanto físicas y eléctricas como ópticas al nuevo sólido formado. Por ejemplo, el carbono puede cristalizar en grafito en determinadas condiciones y en otras cristaliza en el diamante, sin duda las características de uno frente a otro difieren bastante para tratarse en ambos casos de carbono cristalizado.

Este proceso no sólo es dependiente de la presión y la temperatura en sí mismos, sino también del tiempo aplicado en cada uno de dichos factores. De esta forma se sabe que la formación de cristales requiere un calentamiento del material a alta temperatura, aproximadamente 200°C, lo que se conoce como temperatura de cristalización, a partir de la cual el elemento se funde para posteriormente, usando un tiempo lo suficientemente largo, cristalice. Al añadir temperatura al material realmente le estamos damos energía, permitiendo que las partículas que lo componen oscilen a mayor velocidad con una mayor energía térmica, logrando que se funda(cambie al estado líquido). Luego mediante un enfriamiento lento conseguimos dar tiempo a las partículas que, de forma natural, tienden a retomar una forma geométrica y ordenada en la red interna consiguiendo así que se forme un cristal. De igual forma, si repetimos el proceso pero aplicando un tiempo de enfriamiento demasiado corto impedimos que las partículas pueda "re-colocarse" en una red cristalina homogénea haciendo así que la solidificación de lugar a un amorfo. El policristal es el caso más típico de los que puedan encontrarse en la naturaleza, ya que un monocristal es un caso que rara vez se da. Un cristal posee diferentes zonas que no pueden homogeneizarse entre si, pero se puede hacer que sean como monocristales individuales en cada una de sus regiones.

Siguiendo el ejemplo del carbono, la cualidad de que un mismo elemento pueda cristalizar en diferentes formas nos lleva al hecho de que es la red cristalina que forman la que determina sus propiedades. En la naturaleza existen 14 tipos de redes cristalinas (otras más complejas son combinaciones de estas más simples) que son conocidas como Redes de Bravais. Estas redes son organizaciones geométricas tridimensionales en el espacio características de las partículas del sólido. Así pueden estudiarse las distribuciones en la red de los elementos.

 

 
 
   
BIENvENIDOS  
  ESPERO QUE LES SIRVA DE AYUDA LA PAGINA  
cetis 166  
  dudas o comentarios :
darknessdarius@hotmail.com o
darklikos@live.com
 
Hoy habia 44 visitantes (53 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis